Тел. ОАО «Охрана Прогресс»
Установка Видеонаблюдения, Охранной и Пожарной сигнализации.
Звоните! Приедем быстро! Установим качественно! + гарантия 5 лет.
 
Установка технических средств охраны.
Тел. . Звоните!

Главная  Устройство генераторных установок 

 1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

устройство генераторных установок

Генераторная установка предназначена для обеспечения питанием электропотребителей, входящих в систему электрооборудования, и зарядка аккумуляторной батареи при работающем двигателе автомобиля. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумуляторной батареи. Кроме того, напряжение в бортовой сети автомобиля, питаемой генераторной установкой, должно бгть стабильно в широком диапазоне изменения частоты вращения и нагрузок. Последнее требование вызвано тем, что аккумуляторная батарея весьма чувствительна к степени стабильности напряжения. Слишком низкое напряжение вызхвает недозаряд батареи и, как следствие, затруднения с пуском двигателя, слишком высокое напряжение приводит к перезаряду батареи и, ускоренному выходу ее из строя. Не менее чувствительны к величине напряжения лампы освещения и сигнализации.

Генераторная установка - достаточно надежное устройство, способное вгдержать повышенные вибрации двигателя, высокую подкапотную температуру, воздействие влажной среды, грязи и других факторов. Принцип работы электрогенератора и его принципиальное конструктивное устройство одинаковы у автомобильных генераторов, независимо от того, где они выпускаются.

1.1. Принцип действия вентильного автомобильного генератора

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И наоборот, для образования магнитного потока достаточно пропустить через ка -тушку электрический ток. Таким образом, для получения переменного электрического тока требуются катушка, по которой протекает постоянный электрический ток, образуя магнитный поток, называемая обмоткой возбуждения и стальная полюсная система, назначение которой - подвести магнитный поток к катушкам, называемым обмоткой статора, в которгх наводится переменное напряжение. Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует собственно статор генератора, его важнейшую неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) -ротор, его важнейшую вращающуюся часть. Питание обмотки возбуждения может осуществляться от самого генератора. В этом случае генератор работает на самовозбуждении. При этом остаточный магнитный поток в генераторе, т. е. поток, который образуют стальные части магнитопровода при отсутствии тока в обмотке возбуждения, невелик и обеспечивает самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому в схему генераторной установки, там где об- мотки возбуждения не соединены с аккумуляторной батареей, вводят такое внешнее соединение, обычно через лампу контроля работоспособного состояния генераторной установки. Ток, поступающий через эту лампу в обмотку возбуждения после включения выключателя зажигания и обеспечивает первоначальное возбуждение генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, т. к. в этом случае генератор возбуждается при слишком высоких частотах вращения, поэтому фирмы-изготовители оговаривают необходимую мощность контрольной лампы - обгчно 2...3 Вт.

При вращении ротора напротив катушек обмотки статора появляются попеременно севернхй , и южный полюсы ротора, т. е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения. Частота этого напряжения / зависит от частоты вращения ротора генератора д и числа его пар полюсов р:

f=pn/60

За редким исключением генераторы зарубежных фирм, также как и отечественные, имеют шесть южных и шесть северных полюсов в магнитной системе ротора. В этом случае частота f в 10 раз меньше частоты вращения л ротора генератора. Поскольку свое вращение ротор генератора получает от коленчатого вала двигателя, то по частоте переменного напряжения генератора можно измерять частоту вращения коленчатого вала двигателя. Для этого у генератора делается вывод обмотки статора, к которому и подключается тахометр. При этом напряжение на входе тахометра имеет пульсирующий характер, т. к. он оказывается включенным паралельно диоду силового выпрямителя генератора. С учетом передаточного числа i ременной передачи от двигателя к генератору частота сигнала на входе тахометра связана с частотой вращения коленчатого вала двигателя я соотношением:

f=pnдв(i)/60

Конечно, в случае проскальзывания приводного ремня это соотношение немного нарушается и поэтому следует следить, чтобы ремень всегда был достаточно натянут. При р=6 , (в большинстве случаев) приведенное в1ше соотношение упрощается f=n(i)/10. Бортовая сеть требует подведения к ней постоянного напряжения. Поэтому обмотка статора питает бортовую сеть автомобиля через выпрямитель, встроенный в генератор.

Обмотка статора генераторов зарубежных фирм, как и отечественных - трехфазная. Она состоит из трех




частей, называемых обмотками фаз или просто фазами, напряжение и токи в которхх смещены друг относительно друга на треть периода, т.е. на 120 электрических градусов, как это показано на рис. 1. Фазы могут соединяться в звезду или треугольник . При этом различают фазные и линейные напряжения и токи. Фазные напряжения иф действуют между концами обмоток фаз, а токи Iф протекают в этих обмотках, линейные же напряжения ил действуют между проводами, соединяющими обмотку статора с выпрямителем. В этих проводах протекают линейные токи Iл. Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т. е. линейные. При соединении в треугольник фазные токи в V3 раза меньше линейных, в то время как у звезды линейные и фазные токи равны. Это значит, что при том же отдаваемом генератором токе, ток в обмотках фаз, при соединении в треугольник , значительно меньше, чем у звезды . Поэтому в генераторах большой мощности довольно часто применяют соединение в треугольник , т. к. при меньших токах обмотки можно наматывать более тонким проводом, что технологичнее. Однако линейные напряжения у звезды в V3 больше фазного, в то время как у треугольника они равны и для получения такого же выходного напряжения, при тех же частотах вращения треугольник требует соответствующего увеличения числа витков его фаз по сравнению со звездой .

Рис. 1. Принципиальная схема генераторной установки. иф1-ифз- напряжение в обмотках фаз, Ud -выпрямленное напряжение: 1. 2. 3 - обмотки трех фаз статора; 4 - диоды силового выпрямителя; 5 -аккумуляторная батарея; 6 - нагрузка; 7 - диоды выпрямителя обмотки возбуждения; 8 - обмотка возбуждения; 9 - регулятор напряжения

Более тонкий провод можно применять и при соединении типа звезда . В этом случае обмотку выполняют из двух параллельнных обмоток, каждая из которых соединена в звезду , т. е. получается двойная звезда .

Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых: VDI, VD3 и VD5 соединены с выводом + генератора, а другие три: VD2, VD4 и VD6 с выводом - ( массой ). При необходимости форсирования мощности генератора применяется дополнительное плечо выпрямителя на диодах VD7, VD8, показанное на рис. 1. пунктиром. Такая схема выпрямителя может иметь место только при соединении обмоток статора в звезду , т. к. дополнительное плечо запитывается от нулевой точки звезды .

У значительного количества типов генераторов зарубежных фирм обмотка возбуждения подключается к собственному выпрямителю, собранному на диодах VD9-VD11.Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Полупроводниковые диод: находятся в открытом состоянии и не оказывают существенного сопротив -ления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении.

Рис.2. Представление фазного напряжения иф в виде суммы синусоид первой, и1, и третьей, и3 гармоник

По графику фазнхх напряжений (см. рис. 1) можно определить, какие диоды открыты, а какие закрыты в данный момент. Фазные напряжения Ифl, действует в обмотке первой фазы, Иф2- второй, Ифз- третьей. Эти напряжения изменяются по кривтм, близким к синусоиде и в одни моменты времени они положительны, в другие отрицательны. Если положительное направление напряжения в фазе принять по стрелке, направленной к нулевой точке обмотки статора, а отрицательное от нее то, например, для момента времени t1 когда напряжение второй фазы отсутствует, первой фазы - положительно, а третьей - отрицательно. Направление напряжений фаз соответствует стрелкам показанным на рис. 1. Ток через обмотки, диоды и нагрузку будет протекать в направлении этих стрелок. При этом открыты диоды VDI и VD4. Рассмотрев любые другие моменты времени легко убедиться, что в трехфазной системе напряжения, возникающего в обмотках фаз генератора, диоды силового выпрямителя переходят из открытого состояния в закрытое и обратно таким образом, что ток в нагрузке имеет только одно направление - от вывода + генераторной установки к ее выводу - ( массе ), т. е. в нагрузке протекает постоянный (выпрямленный) ток. Диоды выпрямителя обмотки возбуждения работают аналогично, питая выпрямленнтм током эту обмотку. Причем в выпрямитель обмотки возбуждения тоже входят 6 диодов, но три из них VD2, VD4, VD6 общие с силовым выпрямителем. Так в момент времени открыты диоды VD4 и VD9, через которые выпрямленный ток и поступает в обмотку возбуждения.




Этот ток значительно меньше, чем ток, отдаваемый генератором в нагрузку. Поэтому в качестве диодов VD9- VDI 1 применяются малогабаритные слаботочные диоды на ток не более 2 А (для сравнения, диоды силового выпрямителя допускают протекание токов силой до 25... 35 А).

Остается рассмотреть принцип работы плеча выпрямителя, содержащего диоды VD7 и VD8. Если бы фазные напряжения изменялись чисто по синусоиде, эти диоды вообще не участвовали бы в процессе преобразования переменного тока в постоянный. Однако в реальных генераторах форма фазных напряжений отличается от синусоиды. Она представляет собой сумму синусоид, которые называются гармоническими составляющими или гармониками - первой, частота которой совпадает с частотой фазного напряжения, и высшими, главным образом, третьей, частота которой в три раза выше, чем первой. Представление реальной формы фазного напряжения в виде суммы двух гармоник (первой и третьей) показано на рис.2. Из электротехники известно, что в линейном напряжении, т. е. в том напряжении, которое подводится к выпрямителю и выпрямляется, третья гармоника отсутствует. Это объясняется тем, что третьи гармоники всех фазнгх напряжений совпадают по фазе, т. е. одновременно достигают одинаковых значений и при этом взаимно уравновешивают и взаимоуничтожают друг друга в линейном напряжении. Таким образом, третья гармоника в фазном напряжении присутствует, а в линейном - нет. Следовательно мощность, развиваемая третьей гармоникой фазного напряжения не может быть использована потребителями. Чтобы использовать эту мощность добавлены диоды VD7 и VD8, подсоединенные к нулевой точке обмоток фаз, т. е. к точке где сказывается действие фазного напряжения. Таким образом, эти диоды выпрямляют только напряжение третьей гармоники фазного напряжения. Применение этих диодов увеличивает мощность генератора на 5...15% при частоте вращения более 3000 мин-1.

Выпрямленное напряжение, как это показано на рис. 1, носит пульсирующий характер. Эти пульсации можно использовать для диагностики выпрямителя. Если пульсации идентичны - выпрямитель работает нормально, если же картинка на экране осциллографа имеет нарушение симметрии - возможен отказ диода. Проверку эту следует производить при отключенной аккумуляторной батарее. Следует обратить внимание на то, что под термином в1прямительн1й диод , не всегда скрывается привгчная конструкция, имеющая корпус, вхводы и т. д. иногда это просто полупроводниковый кремниевый переход, за герметизированный на теплоотводе.

Применение в регуляторе напряжения электроники и особенно, микроэлектроники, т. е. применение полевых транзисторов или выполнение всей схемы регулятора напряжения на монокристалле кремния, потребовало введения в генераторную установку элементов защиты ее от всплесков вгсокого напряжения, возникающих, например, при внезапном отключении аккумуляторной батареи, сбросе нагрузки. Такая защита обеспечивается тем, что диоды силового моста заменены стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении он не пропускает ток лишь до определенной величины этого напряжения, называемого напряжением стабилизации. Обычно в силовых стабилитронах напряжение стабилизации составляет 25... 30 В. При достижении этого напряжения стабилитроны пробиваются , т. е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе + генератора остается неизменнгм, не достигающем опасных для электронн1х узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после пробоя используется и в регуляторах напряжения.

1.2. Принцип действия регулятора напряжения

В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки - тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить - увеличивается.

Принцип работы электронного регулятора удобно продемонстрировать на достаточно простой схеме регулятора типа ЕЕ 14V3 фирмы Bosch, представленной на рис.3.




 1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16



Установим охранное оборудование.
Тел. . Звоните!